High Performance RF Probes – Tackling 5G

RF Technology Days 2018 Dominik Boehler, MSc, Head R&D

Content

Company

State of the Art

Testing Challenges Posed by 5G

Testing Topologies

Conclusion

Welcome to INGUN

The Manufacturer of Testing Equipment

ENENDAAI

State of the art

RF Technology Days 2018– INGUN Prüfmittelbau GmbH – Dominik Boehler

What can be tested?

Large assortment of RF probes up to 20 GHz - unrivaled range

- PCB contacting in grids up to 0.5 mm (= 20 Mil)
- RF probes for all standard connectors from "A" like AMC to "X" like X.FL
- Automotive connectors, such as FAKRA, HSD, etc.
- Integrated technologies, such as filters and attenuators
- High speed testing, e.g., USB 3.1 C, HDMI 2.0

What can be tested, and how?

Physical Layer Testing Challenges Posed by 5G

What are the major challenges?

- Usage of new sub-6 GHz bands
- Emergence of mmwave
- Emergence of MIMO
- Low latency

- High density packaging
- Uncertainties about 5G itself
 - Which mmwave band will be used?
 - Which RF architecture will be used?

Source: Presented in IMS-2017, 5G summit by Qualcomm

Resonances in coaxial RF probes

Emergence of new sub 6 GHz bands in 5G calls for broadband probes

- Resonances in coaxial RF probes are unwanted
 - \Rightarrow sporadic phenomena
 - \Rightarrow unreliable testing
- Resonance frequencies mostly above 3 GHz
- Localization by TDR (Time Domain Reflectometry)

Where do they come from?

- Deviation from pure coaxial lines because of structures S₂₁ [dB]
 integrated in them
 - \Rightarrow reliable contact to DUT possible
 - \Rightarrow movability of the probe
- These structures sometimes have inductive and capacitive nature
 - \Rightarrow resonances

Remedies

- Avoiding parasitics
- Modifying parasitics
 - \Rightarrow resonance frequency out of operating range
- High mechanical and RF repeatability

Resonances in coaxial probes

Example 1: Probes consisting of two moving cylinders

- Coaxial probes consisting of two moving cylinders are vulnerable to resonance
 - contact is produced with the tilting of the inner cylinder
 - The resonance frequency is a function of the gap and overlap between the two cylinders amongst other factors

ina

Resonances in coaxial probes

Example 2: Frontal contact, rotation angle dependence. The frontal contact point is also the center of rotation.

ingu

Mmwave Probing

- $\uparrow freq \Rightarrow \downarrow \lambda$
- As λ gets smaller, even small transmission line irregularities will be magnified resulting in losses due to reflection.
- Coaxial probes generally have a low pass curve

Phase shifting architectures & potential test points

Potential phase shifting architectures and mmWave test points of 5G handset

RF Testing Topologies

Testing with probe in series with the DUT

RF Probes in series

- Probing before the components (e.g. antenna) are populated
- Probe impedance should match DUT line impedance \Rightarrow mostly 50 Ω

Advantages

- Non intrusive
- Low reflection measurement possible

Disadvantages

 Change of characteristics after populating

Testing with probe in parallel with the DUT

RF Probes in parallel

- Probing is possible after the components are populated
- Probe impedance should be chosen not to intrude in the measurement
 - Two different variants possible

Advantages

- Easier for a populated PCB

Disadvantages

- A lossless reciprocal 3-port circuit cannot be simultaneously matched
- More intrusive than series

Parallel configuration

T-with attenuator

T-with resistor and matching

Testing with probe in parallel

Impedance-matching probe for antenna feed testing

inqur

RF test probe with narrow band matching network

Comparision of simulation and measurement: The transformation shown in the Smith chart

Conclusion

- Usage of new sub-6 GHz bands
 - Resonance free probes
- Emergence of mmWave
 - Mm wave probes
- Emergence of MIMO
 - OTA Probes
- Low latency

- Probes with repeatable electrical length
- High density packaging
 - Probe miniaturisation
- Uncertainties about 5G itself
 - Preparing for different scenarios

Thank you for your attention

Need more advice? Don't hesitate to contact us.

INGUN Prüfmittelbau GmbH Max-Stromeyer-Straße 162 78467 Konstanz Germany info@ingun.com www.ingun.com

